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ABSTRACT
This paper proposes a remote photo-plethysmography

measurement technique where human skin color variations
are analysed for observing human vital signs including but
not limited to average heart rate and variation. Remote moni-
toring of the vital signs could be useful for non-contact phys-
iological and psychological diagnosis. For this purpose, an
off-the-self non-invasive video camera is used. Facial appear-
ance modelling is performed for stabilizing color variations in
the selected facial region during the signal acquisition stage.
The proposed method offers a novel signal processing ap-
proach for extracting the periodic component of the raw color
signal for the heart rate and variation estimation. To this end,
we have collected a ground truth dataset using a PPG instru-
ment attached to the skin of the subject under observation.
Objective performance tests show strong correlation with the
ground truth values for the estimated heart rate and variation.

Index Terms— Remote PPG, facial expression, active ap-
pearance models, heart rate and variability

1. INTRODUCTION

Remote monitoring of vital signs via a conventional video
camera by detecting the photo-plethysmographic (PPG) sig-
nals have gained attention due to the advantages it offers.
The main advantage of being remote is to provide a method
for non-invasive and passive monitoring of the vital signs.
This could be useful for medical circumstances where physi-
cal contact with the patient is not preferred. Moreover, as the
video camera could capture multiple persons during a shoot,
vital sign monitoring of multiple persons could be possible
with the same configuration. Moreover, the method could be
applied to detect psychological disorders/anomalies using the
long term changes in the vital signs.

PPG based techniques depends on the reflectance prop-
erties of human skin for measuring the changes of oxygen
saturation in the blood. The underlying principle is that the
variations in blood flow due to heart beats would change the
volume and the oxygen saturation of the blood in the vessels,
and hence the skin reflectance. Sensors that are attached to
the body to measure these color changes have been widely
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available. Moreover, recent methods for remotely measuring
these periodic changes have been proposed [1], [2]. Mea-
surement and analysis of the vital signs attain a vital role in
monitoring human physical and/or psychological health con-
ditions. Such measurements could well be useful in the sense
that such methods could make long time monitoring and pre-
dictive analysis possible and hence making the precautionary
action be a part of the treatment. Moreover, such methods
could be used in the cases where invasive instruments for vi-
tal sign analysis are difficult or even impossible to use for
various reasons, e.g. attachment/detachment of a sensor to
a patient under intensive care could violate the sustained hy-
giene environment and regulations. The conventional meth-
ods of vital sign measurements (including but not limited to
heart rate (HR), heart rate variability (HRV), respiratory rate,
etc.) require an installation that could violate the hygienic
conditions and/or cause discomfort to the patient in need of
assistance. Methods utilizing visible light spectrum where
no active illumination is applied or required have been pre-
sented in order to overcome the aforementioned difficulties.
Remote photo-plethysmography (RPPG) measures the small
deviations in color values in order to extract the periodic com-
ponents (heart and/or respiratory rate) of the color signal. By
capturing the color information of the skin with a proper sam-
pling rate, these variations could be recorded and analyzed.
However, the process of remotely measuring skin color vari-
ations for the purpose of vital sign measurement requires the
measured skin locations to either stay stable, or be accurately
tracked. Since the minor changes in color are essential for ac-
curate vital sign measurement, even the smallest movements
could cause a major degradation in the final performance.

2. PREVIOUS WORK

There has been some prior work dealing with camera based
remote estimation of human vital signs. [3] is one of the
early studies published to deal with remotely estimating HR
from a video. This method comprises of tracking the average
brightness of a (manually selected) region of interest (ROI)
on the subject’s face. The first order derivative of this signal
is then passed through a low pass filter, and an auto regres-
sive (AR) spectral analysis is conducted to find dominant fre-
quencies corresponding to the HR. However, this method is



only shown to estimate the average heart rates over a 30 sec-
onds period. Similarly, the work presented in [2] estimates
HR and respiration rate from the video by spatially averaging
the R,G,B channels in a manually selected ROI. Frequency
spectrum analysis is performed following the band pass fil-
ter operation. Green channel is mainly focused as having the
strongest phelthysmographic signal.

On the other hand, the method presented in [4] utilizes
a highly sensitive thermal camera to estimate HR. The em-
ployed signal processing involves performing fast Fourier
transform (FFT) on the signal acquired from a rectangular
ROI.

The Eulerian Video Magnification (EVM) study [5]
presents a method to amplify subtle changes for obtaining
video magnification. The images are spatially decomposed
and temporal (band-pass) filtering has been performed in or-
der to amplify changes lying within a pre-set frequency band.
Moreover, the flow of blood to the face is visualized on the
reconstructed video. Another recently proposed method [6]
performs independent component analysis (ICA), a special
case of blind source separation, over the three color channels
of an RGB video. It has been observed that the second chan-
nel of the ICA contains strong plethysmographic information.
A face detection method is also included for obtaining the fa-
cial region and hence selecting ROI appropriately depending
on the detected rectangular face region.

An alternative study described in [7] presents a method
for estimating the pulse-rate of a subject in a video by track-
ing positions of multiple features on the head and performing
principal component analysis (PCA) over their trajectories.
The pulse rate is then extracted from the component that best
corresponds to the frequency of heartbeats on the frequency
spectrum. No color information is utilized in this method.
A major disadvantage with this method is that strong move-
ments of the head could easily violate the assumptions and
create erroneous measurements.

A recent study [8] presents a method of estimating the
average pulse-rate by performing PCA on the average R,G,B
channel signals from a manually selected ROI on the subject’s
face over a 30 seconds period. The method in [9] explores the
use of color channel signal obtained from a ROI in a video to
estimate additional physiological parameters like resperation
rate and blood oxygen saturation (SpO2).

The prior methods mostly define a fixed ROI for the sig-
nal acquisition. Therefore, the observed face is expected to be
kept stable and even small movements are not tolerated. How-
ever, with our proposed method, ROIs are adaptively updated
for creating a more intuitive and practical scenario.

3. PROPOSED TECHNIQUE

The purpose of this study is to present a method for measur-
ing human vital signs where free head movement is allowed.
For the proposed free head movement, the active appearance
model (AAM) technique [10] is used to detect facial landmark

Fig. 1. ROI alternatives on neutral (left) & smiling (right) face

locations. The parametric representation of the facial appear-
ance is computed using the FaceReader [11] framework. The
proposed facial landmark localization gives the system the
capability of tracking selected region of interest through the
video and hence obtaining a robust signal acquisition.

The proposed technique is composed of three main steps.
In the first step, face detection [12] and facial landmarks com-
putations [11] are performed. The acquisition of color data is
limited to the selected region of interest (ROI) defined by the
computed landmark locations. The color signal is processed
in the second step for obtaining the periodic component that
relates to the vital sign information. In the final step, the re-
quired vital signs are generated using the noise free periodic
signal. In this study we focus on the average HR and long
term variability for illustration purposes. However, the esti-
mated noise free signal could be further used to perform res-
piration rate interbeat interval (IBI) measurements.

3.1. ROI generation

Active appearance models have been introduced by [10] more
than a decade ago for generating a parametric face model in
relation to the annotated training dataset. Our facial analysis
framework, commercially known as FaceReader [11], uses an
improved version of this methodology for obtaining very ac-
curate appearance models for 3D facial landmark detection.
The detected landmarks are used to define regions of inter-
est where the color data could be robustly extracted. Figure
1 presents some ROI alternatives and shows how the shapes
change while turning from a neutral to smiling face. This re-
gion adaptation provides a stability in the signal acquisition
phases and proves the advantage of the proposed technique.
The regions colored with red are used in our experiments dur-
ing the PPG signal acquisition.

Prior methods [2], [3], [6] mostly utilize a fixed ROI defi-
nition. Therefore the subject is expected to keep stable during
the measurement. With our adaptive ROI generation this limi-
tation is relaxed and the subject is free to move and talk during
the data acquisition stage.

3.2. Periodic component extraction

In the second step of the proposed technique, collected color
data is further processed to remove noise and extract the pe-
riodic signal component. For that purpose the green channel



of the color signal is averaged on the selected ROI. All three
RGB color channels contain plethysmographic information.
However, green channel features the strongest component in
regards to the amount of oxygen absorbed in the blood [2].
For that purpose, averaged green channel is used as the raw
data for periodic component extraction.

We have introduced an intermediate step during the color
averaging process where the outlier pixels in the selected
ROI are removed from the mean calculation. The removal is
performed using the following formula (1) where the pixels
p(x, y) in the selected region R with color value difference,
∆(x, y) with respect to the region average µ(R) is higher
than 3 times the standard deviation σ(R) of the selected ROI.

p(x, y) is an outlier, if ∆(x, y) ≥ 3 ∗ σ(R) (1)

where pixel color difference ∆(x, y) is calculated in the 3 di-
mensional Euclidean space with each dimension correspond-
ing to the RGB color values (2) .

∆(x, y) = ‖p(x, y)− µ(R)‖2 (2)

In order to utilize the plethysmographic information more
efficiently, opponent and normalized color spaces are also in-
vestigated. Moreover, independent component analysis (ICA)
of the RGB signal has also been experimented as proposed in
[6]. However, no significant improvement has been observed
under these variations. Therefore, the averaged green channel
is utilized as the raw data in the rest of the analysis.

The averaged color values are accumulated for a fixed
amount of time interval before conducting the temporal anal-
ysis. For a given time window of the sampled signal, the tem-
poral mean of the averaged green color is subtracted in order
to obtain a zero mean signal for further analysis. The obtained
DC free average color signal, s(t), ideally contains only the
fluctuations due to the blood flow changes altering the skin
reflectance properties. However, due to the inhomogeneity in
the light and skin reflectance properties, the DC removed raw
data s(t) still contains strong trends and noise as observed in
Figure 2 printed with green color.

The removal of the trend in the signal is vital for obtaining
the periodic component and has been conducted in a three step
approach. In the first step, the conventional detrending tech-
nique is applied to the raw signal [13]. In the second step of
the proposed method, we intend to remove the high frequency
(noise) component of the detrended signal as proposed in [6].
For that purpose, we subtract the detrended signal D(s(t))
from the raw signal s(t) and obtain the low pass equivalent,
sLP (t), of the raw signal s(t). The low pass signal is ob-
served to contain smooth periodic components as shown in
Figure 2. Finally, another detrending operation is conducted
to generate the detrended low pass signal D(sLP (t).

D(sLP (t)) = D(s(t)−D(s(t))) (3)

where D(.) is the detrending operator.

 Raw signal s(t)

 Detrended Signal D(s(t))

 LP Signal sLP(t)

Raw signal s(t)

 Detrended LP Signal D(sLP(t)) [Amplified]

Ground Truth PPG

Fig. 2. Proposed three step approach for obtaining periodic
component in the raw signal. Strong correlation (up to a phase
difference) with the ground truth PPG signal is observed

The initial processing of the raw signal plays a vital role
in the succeeding time and frequency domain computations.
We have observed great increase in performance with the pro-
posed initial processing of the noisy green color signal. The
main improvement is observed by removing the detrended
signal from the raw signal. We have used the detrending
method proposed by [13] where a smoothness prior is pre-
sented to facilitate the estimation of HR variability (HRV).

The performance of the proposed signal processing could
be visualized in Figure 2 where the obtained noise free pe-
riodic component is presented together with the ground truth
PPG signal obtained through a PPG instrument attached to the
fingertip of the subject under observation. The phase differ-
ence between the ground truth and estimated signal could be
accounted for the time difference of the blood circulation in
the face and fingertip.

3.3. Vital sign measurement

The body temperature, heart rate, blood pressure, and respi-
ratory rate are considered as the vital signs and are crucial in
determining one’s physical and psychological state. The mon-
itoring and variability in these signals could also be strong
medical indications for diagnostic purposes. In this study, we
focus on the heart rate and its long term variability.

The measurement of the HR is conducted using both time
and frequency domain analysis where the HR is extracted
from the average frequency of the PPG signal measured over
a time window. The main periodic component could either
be extracted using a peak detection over the noise free time
signal or the frequency domain analysis could be used to find
the strongest harmonic component. Both are evaluated and
observed to agree in high signal to noise ratio cases. Figure 3
shows the estimated HR from the time analysis with respect
to the ground truth PPG signal. In our measurements a strong
correlation is observed between the estimated and real HR.
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Fig. 3. Ground truth vs estimated hear rate measurements for
the proposed and EVM method [5]. The advantage of the
proposed method is observed under varying heart rates.

4. EXPERIMENTS

In order to validate the performance of our proposed method,
we conducted experiments where the estimated remote PPG
signal is compared with a ground truth PPG signal obtained
from a contact PPG sensor.

To our best knowledge, there is no publicly available
dataset with ground truth PPG measurements that could be
used to verify the RPPG methods. Therefore, we have created
a new dataset for evaluating RPPG measurements where the
ground truth PPG is provided and synced with the captured
video. We intend to release the dataset for public reach for
research purposes.

A total of 10 subjects aged between 20-35 are included
in the experiments. Two videos of resolution 720x1280 are
recorded per subject at 30 fps for an average duration of 90
sec. In the first video, the subjects were simply instructed
to sit naturally facing the camera. In the second video, the
subjects were instructed to perform physical exercises (run-
ning) before sitting in front of the camera. Simultaneously,
the subjects’ pulse waveforms were recorded using a CMS-
50 Pulse Oximeter placed on the subject’s fingertip. In the
first set of videos, the subjects’ heart rates were stable in the
range of 50-90 beats per minute (bpm). In the second set of
videos, the heart rates were observed to be above 120 bmp,
and slowly decrease to the subject’s resting heart rate (as the
subject’s state of fatigue is alleviated). The results of the ac-
tual vs estimated HR measurements are presented in Figure
3. For each video in the dataset, we have segmented 6 non
overlapping time windows over which the measurements are
performed. For each subject, 12 HR measurements are pre-
sented in Figure 3 for the proposed and the EVM method [5].
The HR values for the EVM method is computed by finding
average period in the selected window of the inversed FFT
signal. The correlation between the HR obtained from the
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Fig. 4. Heart rate varies from 135 to 50 in a minute after a
short running exercise. RPPG estimation follows the heart
rate during the measurement.

proposed method and the ground truth is shown in Figure 4.
It is observed that the accuracy of the estimated HR de-

pends greatly on the smoothness prior of the detrending oper-
ation. A selection of a lower prior results in a more accurate
measurement for the heart rates between 50-90 bpm, while
the higher heart rates being underestimated. Similarly, the
opposite holds for the higher valued priors. The results pre-
sented in Figure 3 and 4 were obtained for a fixed smoothness
prior. The errors for the proposed/EVM method are computed
as follows: (a) Average error for steady HR videos is 2.9/4.3
with a standard deviation of 4.4/6.8. (b) Average error for all
videos is 4.2/5.6 with a standard deviation of 7.7/10.1.

Moreover, the proposed technique allows estimation of
changes in the IBI during the HR measurement. This could
be realized with the proposed time domain analysis after the
detrending operation. This functionality is not possible with
the prior art techniques where only average HR could be mea-
sured after the band pass filtering of the signal.

5. CONCLUSION

In this paper, we propose a novel RPPG method for average
heart rate and variability measurements. The proposed facial
landmark tracking using FaceReader makes the method ro-
bust under head pose and expression changes. This approach,
combined with the preprocessing step where the local trend of
the signal is extracted, provides accurate measurements. The
IBI measurement capability is possible only within the pro-
posed time domain approach. A ground truth heart rate mea-
surement dataset, which seems to be missing in the research
community, is collected for performance evaluation and will
be made publicly available for research purposes.

The main limitation of the method is observed under poor
lighting conditions. Head movements are mostly compen-
sated with the help of FaceReader; however, poor lighting
could deviate the performance of the proposed technique. As
a future direction, the respiratory rate measurement using the
variability in the IBI is planned. Additionally, a dynamic
method for adapting the smoothness parameter of the detrend-
ing operation could be useful. Moreover, the effect of heart
rate variability could further be analyzed for evaluating phys-
ical and psychological experiments.
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